Objectives of Mathematics for third year secondary (SE)

Literal and numerical calculations

Combinations

- Identify the combinations of elements of a finite set.
- Calculate the number of combinations of p elements of a set formed by n elements $(\mathrm{P} \leq \mathrm{n})$ by using the formula $C_{n}^{p}=\frac{n!}{p!(n-p)!}$
- To construct the Pascal's triangle using the formula $C_{n}^{p}=C_{n-1}^{p-1}+C_{n-1}^{p}$
- Know and use the binomial formula to expand the expression $(a+b)^{n}$.

Definitions and representations

Rational functions

- Know that a rational function is in the form of $f(x)=\frac{P(x)}{Q(x)}$ where $\mathrm{P}(\mathrm{x})$ and $\mathrm{Q}(\mathrm{x})$ are two polynomial functions.
- Determine the domain of definition of a rational function.
- Determine the parity of a rational function and explore.
- Study the sense of variations of a rational function.
- Study the limits at the boundaries of the domain of definition of a rational function.
- Find the vertical and the horizontal asymptotes.
- Graphical interpretations of the limits.
- Verify that a given straight line is an asymptote.
- Graphical representation of a rational function.
- Solve graphically the equation in the form of $\frac{P(x)}{Q(x)}=m$ where m is a real parameter.

Inverse functions

- Know and calculate the composite function of two functions.
- Know the inverse function f^{-1} of a continuous and strictly monotone function f.
- Know that the inverse function f^{-1} doesn't exist unless if the function f is continuous and strictly monotone.
- Determine the domain of definition of an inverse function.
- Know that a function and its inverse function have the same sense of variations.
- Calculate, if it is possible, the explicit expression of the inverse function.
- Know that the representative curves of a function and its inverse function are symmetric to each other with respect to the first bisector of an ortho-normal system.

Logarithmic functions

- Know the domain of definition, the variations and the representative curve of the natural logarithm function.
- Know and use the properties of natural logarithm.
- Characterize the number e.
- Know some particular limits.
- Know that the derivative of lnu where u is a function of x is a primitive of $\frac{u^{\prime}}{u}$ with $u \neq 0$.

Exponential functions

- Know that the exponential function of base e is the inverse function of the natural logarithm function.
- Know the domain of definition, the variations and the representative curve of the exponential function of base e.
- Know and use the properties of exponential function of base e.
- Know some particular limits.
- Know that the derivative of e^{u} where u is a function of x is a primitive of $u^{\prime} e^{u}$.

Numerical Sequences

- Know a numerical sequence.
- Calculate the first terms of a numerical sequence.
- Study the variations of a numerical sequence.
- Know that a geometric sequence $\left(\mathrm{u}_{\mathrm{n}}\right)$ of common ratio q where $|q|<1$ admits " 0 " as limit.
- Know that $S_{n}=u_{1}+u_{2}+\ldots+u_{n}=a \frac{1-q^{n}}{1-q}$ where "a" is the first term and q is the common ratio.
- Know that the limit of $\mathrm{S}_{\mathrm{n}} \rightarrow+\infty$ and $|q|<1$ and using it.

Continuity and derivations

Derivatives

- Know and use the derivative of a composite function at a point.
- Calculate the derivative of an inverse function by using the formula

$$
\left(f^{-1}\right)^{\prime \prime}\left(y_{0}\right)=\frac{1}{f^{\prime}\left(x_{0}\right)} \text { with } \mathrm{y}_{0}=\mathrm{f}\left(\mathrm{x}_{0}\right) .
$$

- Know the derivative of an inverse function over an interval.

Second derivative

- Calculate the second derivative of at a point and over an interval.
- Use the second derivative to determine the nature of an extremum.
- Apply the second derivative for optimized problems.

Hopital's Rule

- Use the Hopital's rule to calculate the limits.

Integrations

Integrals

- Know the integral of a continuous function over an interval $[a ; b]$ as the real $F(b)-F(a)$ where F is a primitive of F over $[a ; b]$.
- Use the inverse readings of the formulas of integrations.
- Use the method of integrations by parts.
- Know and use some properties of integrals.
- Use integrals to calculate the area.

Mathematical models for economics and social sciences

Functions of economics and social sciences.

- Know and calculate the profit, the revenue, the cost, the loss, the utility, the depreciation and the level of production.
- Know and calculate the demand, the supply, the elasticity of the demand and the market equilibrium.
- Know and calculate the following characteristics of economical functions: the rate, the average, the marginal, maximum and minimum.

Financial mathematics

- Know the terminology of: The capital, simple interest, compound interest, interest rate, period, the actual value and the acquired value.
- Know and apply the relation that links: the capital, the rate, the period and the interest.
- Know and apply the relation that links: the acquired value, the capital, the rate and the period.
- Know and use the formulas of the annuity.

Statistics

Measures of central tendency and measures of variability

- Know the median class.
- Know the modal class.
- Know and calculate analytically and graphically the median and the mode.
- Identify and determine the range.
- Identify and calculate: the mean, the mean-deviation, the variance and the standard-deviation.
- Compare and interpret two statistical series having the same mean but different standard-deviation.

Distributions in two variables

- Know that a statistical series of two variables is formed of distributions in two variables defined over the same population.
- Know and construct the scatter plot (diagram of dispersion) of a distribution in two variables.
- Know the center of gravity and place it.
- Identify and calculate the covariance of the two variables.
- Identify and calculate the coefficient of linear correlation.
- Give the significance of the coefficient of linear correlation.
- Determine the two regression lines by the method of least squares.

Probability

Conditional probability and total probability

- Calculate $\mathrm{P}_{\mathrm{B}}(\mathrm{A})$ by the formula: $P_{B}(A)=P(A / B)=\frac{P(A \cap B)}{P(B)}$.
- Calculate $\mathrm{P}(\mathrm{A} \cap \mathrm{B})$ by the formula: $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A} / \mathrm{B}) \times \mathrm{P}(\mathrm{B})=\mathrm{P}(\mathrm{B} / \mathrm{A}) \times \mathrm{P}(\mathrm{A})$ where A and B are two non impossible events.
- Know the A and B are two independent events $\mathrm{P}(\mathrm{A} / \mathrm{B})=\mathrm{P}(\mathrm{A})$.
- Know that the event $B_{1}, B_{2}, \ldots, B_{n}$ form a partition of a sample space Ω, if $B_{1} \cup B_{2} \cup \ldots \cup B_{n}=\Omega$ and $B_{i} \cap B_{j}=\varnothing$ for $i \neq j$.
- Know and use the formula of the total probability is given by: $\mathrm{P}(\mathrm{E})=\mathrm{P}\left(\mathrm{E} / \mathrm{B}_{1}\right)$. $\mathrm{P}\left(\mathrm{B}_{1}\right)+\mathrm{P}\left(\mathrm{E} / \mathrm{B}_{2}\right) \cdot \mathrm{P}\left(\mathrm{B}_{2}\right)+\ldots+\mathrm{P}\left(\mathrm{E} / \mathrm{B}_{\mathrm{n}}\right) \cdot \mathrm{P}\left(\mathrm{B}_{\mathrm{n}}\right)$.

Random real variables

- Identify a random variable.
- Know the set Ω_{X} of the possible values of a random variable X.
- Define the law of probability by finding the values of the random variable X and the corresponding probability of each value.
- Determine the function of distribution F of a random variable.
- Representation of the function F .
- Graphical interpretation for the value $\mathrm{F}(\mathrm{a})$ for a real constant "a".
- Know and calculate the mathematical expectation of a random variable.
- Know and calculate the variance of X.
- Identify and calculate the standard - deviation of X.

